| NOVAAPERIO

‘ Self-Adaptive Software
withModel-Checking

4

\®

Chungbuk National University
Department of Computer Science

Prof.EuijongLee



Personal History

EE &g
) §081 2.2

Computer & Informatics
Korea University

KOREA

UNIVERSITY

2018.8 HOVARPERID 2020.9 ~ present
Ph.D. Assistant Professor

Computer Science & Engineering Computer Science
Korea University Chungbuk National University

Graduated
Jeju Jeil High School

Now

2017.9~2020.8 2018.9~2020.8

¢ 2012.8~2014.4 .
O Software Developer Adjunct Professor Postdoctoral Researcher
- AtEar Project - Data Structure Computer and Information Security
(Wireless Network Security Tool) SCU - Software Engineering Sejong University

SEQUL CYBER UNIVERSITY

Prof.EuijongLee

Self-Adaptive Internet of Software
Software Things Modeling

> Self-Adaptive Software Framework
> Self-Adaptive loT Framework

>1oT with Machine Learning

> Big data for Recommendation System




Relationship with KCSE

o KCSE M| 23| A T EQ|O{ RS CII | M} 2%

WADIR

o ENMETYL

= — 24 &, Mo

—;T*}( Principles of Model Checking ‘
e ——— 4

U A): 2013.07.22(2) — 24(5) (3¥3H20417H

A At e vl 23 2033

F3: 740 78 3)

Fo: FF AR A LT E o] T8 LA oE

% &3

5 QR AY: g PR [ o9 E
= 3 : Principles of Model Checking

# 3] 3F: 2013.7.22.77.24.
o & A 2: 322D

S AR PF3PHEYY) 2xEHo)FE
Z4}e)ejg]>}  F3 ¥  “Principles of

, > 2 o
Model Checking” ’4" < FAR%geornz
del Checki A 5]

EZEETLSES

20139 79 24
PIA e}y AT Eg)0] T8 Aajo)olg

™

N4 Y4




Contents

« Research Background

* RINGA: Self-Adaptive Framework

* RINGA-loT: Self-Adaptive Framework for IZ)T
« Cache-based Model Abstraction

» On going & Future Research



Research Background



Framework

»» What is framework?

« Asystemofrules,ideas, orbeliefsthatis usedto plan ordecide something

Cambridge Dictionary

2 20193 = |




Self-Adaptive Software

% Self-Adaptive Software
“Self Adaptive Software evaluates its own behavior
and changes behavior when the evaluationindicates
thatitis not accomplishing what the softwareis
intended to do, or when better functionality

or performance is possible”
DARPA 1997

% Self-Adaptive Software Environment

« Software needsto be applied to various environment
(e.g., “Internet of Things,” “the cloud,” etc.)

« Software needsto adapt to dynamic environmental change




Self-Adaptive Software

%»MAPE-K loop

« MAPE-K feedback loop is most
influential reference control model for

autonomic and self-adaptive system

« Monitoring, Analysis, Planning,

Execution with Knowledge

Analyze Planning
Knowl
Monitor owledge Execute
fﬂ“&_
“xvf
Sensors Effectors

Managed element




Self-Adaptive Software

Sl iE-Adlap tatiiom
. Realization Temporal Interaction
Object to Adapt Issues Characteristics Concerns
- 3
. Impact & Anticipatory Monitoring Human o
Layer Artifact Cost Approadh Type Property Process Involvement Trust || Interoperability
Weak Storing Verificatiom Decision- Adaptation Self- Adaptation Adaptation . ) . .
Adaptation | | Adaptation Method Making mechanism Adaptivity Openness | | Model Domain Reactive | | Proactive | | Adaptive | | Continuous
Model- Goal- || Architecture || Machining Data . . . - Model || Model- . .
Checki based “based Learning mining Static | | Dynamic Internal || External | | Making Achieving | | Close | | Open based free Generic Specific
RINGA and SA-FSM
RINGA-IoT A-FSM
ToT-FSM

Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research challenges.
ACM transactions on autonomous and adaptive systems (TAAS), 4(2):14, 2009.




Model-Checking

<*Exhaustive testing (complete testing)

 Allpossible combinations are used fortesting

* Ideal, butimpossible

“*Example
* Integervariableis 32bit

 Allpossible combination 232*232 = 264

264 = 18,446,744,073,709,600,000

1 sec = 1,000,000

1 day = 86,400,000,000

1 year = 31,536,000,000,000
Testcase / Year = 584942.4

10



Model-Checking

“*Model-Checking

« Modelcheckingis one of the effective static verification methods for software and hardware

Reduction, simplification, and abstraction

Modelis generated transition model (i.e., finite state machine)

Specification (requirement) is presented as specific method(e.q.,,CTLandLTL)

Results canbe YES or CE (Counter Example)

Model II Model Answer
(system requirements)

checking tool
(NuSMV, NuXmy, specification

cge  _ue Cadence SMV, CE-model not satisfy
Specification and SPIN) specification

(system property)

YES-model satisfy




Model-CheckKing

“*Model-Checking

=1y
0= Formalizin

llllllllllllllllllllllllllllll
N *

Requirement

EEEEEEER
7
o)
=
(7]
=
(9]
o
H
s)nsey

Not satisfied |
' with CE :

llllllllllllllllllllllllllllll

2 0O O
\_Model Checking /

Modeling

\ Systemdmodel

( LocatlonH Simulation
error

12



Model-CheckKing

“*Advantage
« Automation
» Counterexample How model-checking can be applied
« Without user involvement self-adaptive software at runtime?

Verifying non-deterministic
Can support various situations

o

“*Disadvantage
« State explosionproblem
« Gap between model betweenreal system

13



RINGA: Self-Adaptive Framework

ACM/SIGAPP Symposium on Applied Computing/ SAC 2017
Information and software technology (2018)



Objective

% Self-Adaptive Software Demand

« Researchthatintegratestraditional verification and theory

with self-adaptive software is in demand

v Given amodel of a system, exhaustively and automatically

« Model-checkingis one of the effective static methods for software U
7]

check whether this model meets a given specification

Finite State Machine LTL(Linear Temporal Logic) CTL(Computational Tree Logic)

Linear Time Temporal Logic (LTL) Semantics

Given an execution path x and LTL properties p and q CTL Semantics

Given a state s and CTL properties p and q

x|=p iff L(%p. p) =True, where p € AP
:i P ::: :oll_x l:npd % sl=p iff L(s, p) = True, where p € AP
Pt P 9 s|l=—p iff nots |=p

X |= iff X|=porx|=
! =p b sl=pnag iff s|=pands|=q

X|= Xp i x|=p sl=pvqg iff s|=pors|=q

x|=Gp iff foralli, X |=p

x|=Fp iff there exists an i such that x |=p

x|=pUq iff there exists an i such that x' |= q and
forallj<i,x|=p

sg[=EXp iff there exists a path s, s, 85, ... such that
si|=p
so[=AXp iff for all paths sg, 4, S5, ... 81 |[= P




Objective

< Objective: Self-Adaptive Software Verification
with Model-Checking

« Model checkingis one of the effective static verification methods

for software
« Chronic problems(i.e., state explosion) need to be resolved at runtime ,ﬁ-“‘"-\
s’ =
[ [ ' f
A self-adaptive software framework is proposed ‘)

that applies model checking forthe software .‘.-"“" “ ?lﬁ“

to verify itself at runtime (RINGA) Tﬁ‘
' \){""’4
\,'.'.-/

16



RINGA: Self-Adaptive Software Framework

~Design-Time N ~-Runtime N
Design FSM Model Evaluate Correctness Monitoring Analyzing
of FSM Model -
Running “\JQ .
System dl/\f' > (l—xl-(l'ﬂ-k(llml'vl ,,ﬁ,_\;
- ) AT+ 2]
Abstracted :>
FSM
Monitoring Data Monitoring Data
X y.zks,m,... XV, Z K, s, m, ...
Extract Monitoring ) ﬁ . , \J_I'/
Data & Triggers Executing Planning
from FSM Model ,’i — (Select Adaptive Strategy\
. ’,’ Model | Running %5:;5 O if(;tate=SP) .
¢ Update I System {trigger#SP = off)
% Requestl - [ if(state=RA)
\\r_-J A <:| {trigger#RA = on;)
\ [ if(state=TC)
- 1(SP) = (1-x)x(1-y) x(1-k) 5 {trigger#TC = off)
" T _ Tigger 0 _
Finite ¢ H(TO=(1x)x[{(1-y)k} x XX,y >y, Z 7, if(state=5D)
State g {(1-)x m+1}+yz] Kok s—s .. {trigger#SD = off;)
Machine L )
kn. J \ J Y. k‘ o “~ o’ )

X The abstraction algorithmis executed once



RINGA: Self-Adaptive Software Framework

~Design-Time

J/

< Self-Adaptive Software Modeling

Design FSM Model ‘ [Evaluate Correctness
of FSM Model

e SA-FSM (Self-Adaptive Finite State Machine)

9 Normal Tra;

*® 2 -y, Adaptive tra
§(p atio bv dt ns)

Initial Normal State
ﬁ

Satisfy Dissatisfy Adaptable
Requirement Requirement Strategy

[ Extract Monitoring 1
Data & Triggers
from FSM Model

) ; .[1-!‘[-‘-:‘
— A — &/ ... o A-FSM (Abstracted Finite State Machine)
L- :I‘..r--ﬁ-..ll: :‘.-' -\;
- - * © =3 A_FSM transitio

- Trigger transition

. f(SP) = (l—X) X( l—y) X( I—k) 1 Satlsfy (operatio |J nditions)|
Finite © - f(TC)=(1-x)x[{( l—y)k} % _ Requirement
State ' 9 {(I-l)x m+1}+yz] Initial « L
Machine .- ...
\. : . ) . Dissatisty Adaptable

Requirement Strategy



RINGA: Self-Adaptive Software Framework

% Abstracting Processes

® SA-FSM Example @ Extracts Reachable pathsto specific models ® Conversion SA-FSMto A-FSM

O Normal State O Satisfy requirement
O Dissatisfy requirement O Adaptive state

— Normal transition -----» Adaptive transition
(operation by conditions)

*or " 8"

Parent(Vertical) : “

Sibling(Horizontal) : "+" or “||"

f(B)=(a*xd)+ (a*xbxc)

Converted with “*" and “+"

Converted with “&8&" and “||"

f(3) = (a&&d)||(a&&b&&c)

(axbx*h)

(a&&b&&H) _@
@+ D)+ (@*bsc) @9@

or
(a&&d)||(a&&b&&c)

O Normal State © Satisfy requirement
O Dissatisfy requirement O Adaptive state

— A-FSM transition -===% Trigger transition
(operation by conditions)

19



RINGA: Self-Adaptive Software Framework

% Runtime with MAPE-loop

« Monitoring: collects data from the

environment and internal software changes

 Analyzing: analyzes the symptomsrelatedto
adaptation situations using the monitored data
(i.e., calculate A-FSM)

« Planning: triggers an adaptive strategy when

adaptationisrequired

« Executing: activating the adaptive strategies

~Runtime

)

Monitoring

Running “gQ
System ilf\f ]

Monitoring Data
XV, Z Kk s, m,...

Analyzing

Monitoring Data
XV, Z K, s, m, ...

r

Executing

X_”(‘,Y—’Y:Z—NZ’.-
k—ks—s, ...

Planning

(Select Adaptive Strategy\

O if(state=SP)
{trigger#SP = off;)
[ if(state=RA)
{trigger#RA = on;)
[ if(state=TC)
{trigger#TC = off)
O if(state=SD)
{trigger#SD = off))

. J
\ J

20



RINGA: Self-Adaptive Software Framework

< Experimental Evaluation

« RINGA canbe appliedinvarious hardware & RINGA is efficient at runtime

210 (a) Results of Android phones and a laptop * 140
180 +A8 x85 ©87 <88 &8GN5 Ai7-2620M | 130 e 2
J 120 % ] o Q@ 0 6 @ g b e Q@ 0 90
;@ 110 Lo I.Q.,-DOQO.- .'G)O'D-'C—“ s © ©® B 9 Y ¢ g
150 *H o ¢ o7
0 -’%{ z 20
£120 4 Zw
S A B . A S Ap
i 60 :;g ;lg as® % \5_&\5,&&‘&\"*36-&& bbb naﬂ‘s& Baad” e sE
30 / 20
10
OROEYS - & 0 x-}(_v_ﬂ Canr e P CaTra "—nvr\M
() BEEAARASRARERAEAARARERABREREARRAALS 5 7 91113 15Nl7bl9 21_1 23 2(5_2}1? 29 31 33 35)37 39 41 43 45
5 10 15 20 25 30 3 40 45 um cr(:l states \t}ll two trla{}snwns v
Number of states (with two transitions) 550 *RINGA o NusM  CadenceSM
14 °
(b) Results of laptops, desktops and a server 225 o
12 +17-2620M *15-5200U ©15-4670 5 500
H15-6500 4-Xeon E3-1230 v3 ; 5
10 ! 175
o * 2 150 o
g i £
\.q_; 8 y é ‘g 125 g g g g o g 5 ; g o
( = o
56 j} = 100 8 ggagogogo o
; 75
1 A 50
v A
2 253&@‘33&11&33@6’5
) BaPaaResaea: ; o N K w ¥ ox X 3 x K % x ¥
i 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 10 15 2 25 30 35 40 45 Number of paths (20 nodes with 3 transitions)

Number of states (with two transitions) x RINGA o NuSMV & CadenseSMV



RINGA: Self-Adaptive Software Framework

< Proof of Concept with loT Light Control Scenario

* RINGA isimplemented with Java

« Android application and Arduino light controller are implemented
« RINGA performsreasonably well with adaptivenessto various environmental changes

a» (([e
’?\ \((( —_—

5 -© 0

Attempt to connect Check user Monitor Perform

wireless network ir . . .
requirement environment  analysis & planning

1 t |

< Scenario: Self-adaptive light control >

Control related
devices

<Implementation with Android and Arduino >

)
SA-FSM
1. Available sensor exists

{Too bright} M,

(&) -

!
S

atural lightly 3- Light can be reduced
i

16
[ATtemy Pl reconnect| {] H |3 ..:u ; kb .
ght canng p
. . " ici p’ . . h
<y et Connect M@es. Shutdown=fa w@e? sufficient power (=) e11: Sensor readable a3 o _bedncreased _ @
{Starth  {Check connection)  {Check Shutdown) [Check power) (R Sesnvsor) {Check requinement]  (Increase light} {Poor resource}
] . ' {under 10 lux)
[P :
(O semssne ) sttt s @) e st peonty s

<Modeling Result forthe scenario>

22



RINGA-loT:
Self-Adaptive Framework forloT

Sensors (2019)
Ambientintelligence &humanized computing (2020)



Objective

< Objective:loT System Modelling &
Strategy Extraction with Game TheoryforloT

* loT systemmodellingbased on RINGA

- Gametheoryis amathematical theory that facilitates decision-making
in a set of different stakeholders
(e.g.,economics, political science, biology, and computer science)

« A game-theoretic method can be used in self-adaptive software to
determine the optimal decisions under different requirementsatioT

A self-adaptive software framework is proposed forloT
using a game-theoretic strategy extraction method (RINGA-|oT)

24



Simple Research Background

< Game Theory:

- Gametheoryis amathematical theory thatfacilitates decision-making

in a set of different stakeholders

(e.g.,economics, political science, biology, and computer science)

« The Nash equilibrium is one of the foundational concepts in game theory

25



Simple Research Background

<» Game Theory: Nash Equilibrium (simple example)

 Battle of the sexes game

Benefit of Woman
X man and woman art gaJIery football
art galler (1, 3) 0,0
} Man el \(; ;)’ (ﬁ:)\
| football (0,0) 13.1)

There are two Nash equilibrium,
. .anditisneeded strategy rule to select a strategy

Sta dard
hartered

%




RINGA-loT: Self-Adaptive Framework forloT

% Relationship between RINGA and RINGA-IoT
~ RINGA framework ~ ~ RINGA-loT framework ~

Design-Time ~Runtime ~Modeling-phase ~Runtime-phase ~
Evaluate Correctness, Monitoring Analyzing rCollecting ~Monitoring —Analysis
- Collect available IoT-device s

Design FSM Model

of FSM Model

- Categorize devices according to
related requirements

- Classify devices as sensor-device or
act-device

- Read sensor-device value
- Detect new device - Check requiremer

o =4 b a se d * Design a system model™ - Detect requirements change abstracted loT-FSM
@ ﬁ — based on [oT-FSM m f ;
Extract Mol-utormg Abstract FSM Model - . - Build database about 3+ =+ -3~ ~Ex ing Pl i
Data & Triggers Exccuting Planning read and act devices 6‘6 )
: == iy

~Modeli
'S

Monitoring Data

sy ks

©ea6
0 o

from FSM Model Select Adaptive Strategy

= ©

Runaing
{trigger#SP = off) rAbstracting

System

[ if(state=Ra)
(triggentRA = on) . Abstract the syst
0 ifistate=Tc) stract the system - ) .
H(SPY = (Lx)xtLy) (1K) = (triggeréTC = off) model to run-time . . Find Nash equilibrium
ATCH 1 {1y} . ez 0 if(state=S0) model - Executc adaptive stratcgics between requirements
- Select adaptive strategy

{trigger#SD = off)

{(1-1)x meH+y7] K=k s

— Model N — Model N
7 SA-FSM ———— A-FSM s 10T-FSM ————— ~ NE-loT ~
for Self-Adaptive for F_(yntqne forloT Environment for Strategy

Software Modeling Verification Extraction

=3 Normal Transition il Chedk Check Salisly
— 3. daptive ansition Sensoi-device | Requirement  Reguirement "
(operation by conditions) A b stra Ct > —3 A-FSM transition 1 U se
5 Trisger tramsition
. Satisfy (operation by conditions) ‘

Initial Normal State Oﬁ Requircment Adaptable Check
. | # . e . L. O Strategy  Requircment Aul‘rdv;luc
O : S - Find Nash equilibrium

between requirements

Dsﬂlefke / \ j
~,

Dissatisfy Adaptable
Requirement Sirategy

k\ ch:il:‘;;cm R?g‘]:‘if:;?nl A;:‘E‘{:Sle j k /)

Increase
«

based




~Modeling-phase

~Collecting
- Collect available IoT-device
+ Classify devices as sensor-device or
act-device
- Categorize devices according to
related requirements

~Modeling

- Design a system model™
based on IoT-FSM

- Build database about = e

read and act devices 6‘6

cad Device  Requirement  Rogquiremse

O~0—~0-0
Cheek Satis
- Requiremeny
1 ’i 1
L 1
Mssal Check
Act-device
1]1

rAbstracting

- Abstract the system O
model to run-time
model

Apply
Designed
Model

f: Update

\\Request

pA ]

\l

Y pe——

RINGA-loT: Self-Adaptive Framework forloT

~Runtime-phase

—Monitoring

Q

- Read sensor-device value
- Detect new device

- Detect requirements change

1

~Executing

- Execute adaptive strategies

—Analysis

SAT-Equation

Satisfy
Requirement

Initial Adaptable
Strategy

DISSAT-Equation

Dissatisfy
Requirement

- Check requirements using
abstracted [oT-FSM

-

—Planning

¥

- Find Nash equilibrium
between requirements
- Select adaptive strategy

28



RINGA-loT: Self-Adaptive Framework forloT

~Modeling-phase

~Collecting
- Collect available IoT-device
+ Classify devices as sensor-device or
act-device
- Categorize devices according to
related requirements

~Modeling

- Design a system model™ =
based on IoT-FSM

- Build database about

read and act devices

Ches
Read I
L4
]
Yissa

1 1
Check Satisfy
Requirement  Requiremsent
1
1
Check
Act-device
11
. .

rAbstracting

- Abstract the system
model to run-time
model

v

rs
A

\

Apply
Designed
Model

4
/ Model
Update
\\Request

'\ pm=—d
pA ]

\l

% loT-FSM:ModelforloT
e FSM modelbasedonSA-FSMforloT

| | 1 1
Initial Check Check Satisfy
Sensor-device Requirement Requirement
1A 1
1 1
Adaptable Dissatisfy Check
Strategy ~ Requirement Act-device
A 1 | 1
*
#* *
Increase Decrease
* | *

29



RINGA-loT: Self-Adaptive Framework forloT

< MAPE-loop
« Monitoring—-Analysis—Planning-Execution
« NE-loT:Game Theory based Strategy
Extraction
« Strategy score to select optimal solution at

runtime

Strategy Score = a {log (ii:ll + 1)} +p {log (AD1+1 + 1)}

Ka+pf=1

SR: the number of requirements that can be satisfied by the execution of a strategy
RR: the number of requirements that can be affected by the execution of a strategy
AD: The number of act devices that operate under an adaptive strategy

~Runtime-phase

—Monitoring

Q

- Read sensor-device value
- Detect new device

- Detect requirements change

1

~Executing

- Execute adaptive strategies

—Analysis

SAT-Equation

Satisfy
Requirement

Initial Adaptable
Strategy

DISSAT-Equation

Dissatisfy
Requirement

- Check requirements using
abstracted [oT-FSM

¥

—Planning

- Find Nash equilibrium
between requirements

- Select adaptive strategy

30



RINGA-loT: S-A Software Framework forloT

% NE-loT: Game Theory based Strategy Extraction

» Requirement /5{7,:..,/7}. | Act-device as a strategy of the requirement
» 1x)={t;(x).... f,(x)}is the payoff function. Nash equilibrium as a solution of the game

« Apayofffunctionis evaluated at xS, (=Solution satisfies all requirements)
« Xx;isanact-device profile of player i
e Xx_isanact-device profile of the other players.

« Requirement /operates act-device x; resulting in strategy profile x=(x,..x /), then,
requirement /obtains payoff 7(x).

« x"€SisaNashequilibriumforloT whenvi,x; € S;: fi(x],x*;) = fi(x;, xZ;).
« x*canbe anoperation candidate at runtime.

A strategy with the highest Nash equilibrium value among requirements is selected and
implemented.

31



RINGA-loT: S-A Software Framework forloT

< Evaluating Strategies

Strategy Score = «a {log (Zi: | 1)} + [ {log (AD1+1 | 1)}

*oat+p=1

« SR:the number of requirements that can be satisfied by the execution of a strategy
« RR:the number of requirements that can be affected by the execution of a strategy

« AD: The number of act devices that operate under an adaptive strategy

Maximum satisfied requirements, Minimum affected requirements, Minimum act—-devices

32



RINGA-loT: Self-Adaptive Framework forloT

Time (ms)

Time (ms)

<» MAPE-loop Evaluation (e.g., runtime performance evaluation)

« Fixedrequirement(10) with increasing act-devices

8
Abstracting process 20 Analysis process 3500 )
7 18 Plenning process
16 3000
6
14
5 2500
4
3
2
20 25 30 35 40 45 50 20 25 30 35 40 45 50 0 B 5 30 | - | 45 50
) Number of Act-devices Number of Act-devices Number of Act-devices
#15-4670 £I5200U +Xeon E3-1230 +S8 #15-4670 =215200U +Xeon E3-1230 =S8 #i5-4670 =215200U -+Xeon E3-1230 =S8
 Fixed act-device(40) withincreasing requirements
0 _ 8 , 900 _
0 Abstracting process ; Analysis process 0 Plenning process
8 6
7
6 5
5 4
4 3
3 2
2
1 1
0" 0
5 10 15 20 25 30 5 10 15 20 25 30

Number of Requirements Number of Requirements Number of Requirements
#i5-4670 215200U +Xeon E3-1230 =S8 *i5-4670 2I5200U +Xeon E3-1230 =S8 #15-4670 =15200U -+~Xeon E3-1230 =S8

33



RINGA-loT: Self-Adaptive Framework forloT

< Proof of concept with loT-based smart greenhouse scenario

« Requirements:Light, Humidity, and Temperature
 Actuators: Light controller, Windows, and Fan

e Three scenarios with different situations

[ ]

Humidity:
32~34 %

°C & Temperature:
20~24 °C
- J

~Requirements——— ,-Outszde
@ - |
o, 110~150lux | e @ & o ————




RINGA-loT: Self-Adaptive Framework forloT

< Proof of concept with loT-based smart greenhouse scenario (cont.)

« Models and abstracted model based on proposed framework

« The most optimal solution with game-theory based strategy extraction

~FSM modelling N  Abstracted FSM \ Payoff matrix with external environment #1
m b persra ey e Light
.mi . . = Increase Decrease Open Close
L sy (light) (light) | (windows) | (windows)

(,1,1) | (1,0,1) | (1,1,1) | Operation On
S8 =0.458 85 =10.49 | confliction (fan)

(,1,-1) | (1,0,-1) | (1,1,-1) | Operation off
Open confliction (fan)

(windows) | (1,1,-1) | (1,0,19) | (1,1,-1) | Operation Open
confliction | (windows)

o Operation | Operation | Operation | Operation Close g
= confliction | confliction | confliction | confliction | (windows) 2
E ©,1,1) | (0,-1,1) | Operation | (0,0, 1) On g
Pedpreler m ] - =
confliction (fan) =
*efitel 11 es0ji - (O’ ]’ 0) (0’ -] 2 0) Opcraﬁon (0’ 0’ O) Off
""" ' : Close confliction (fan)
A i (windows) | Operation | Operation | Operation | Operation Open
Legend confliction | confliction | confliction | confliction | (windows)
N\ Satisfied 2\ Dissatisfied Adapt Other , Normal ey Adaptive 0,1,0) | (0,-1,0) | Operation | (0,0,0) Close
J state (Sy,) J state (Sg) state (S,qap) state transition transition confliction (windows)

<Strategy extraction example >

<Modeling Results > 35



Cache-based Model Abstraction

IEEE Internet of Things journal (2020)



Objective

% Objective: Reduce Abstraction & Verification Time in RINGA

 |loT deviceshaslow computing power
« RINGA required time to abstraction and verification time with complex model

« Abstraction and verificationtime have to be reduced to applied
inlow computing devices

A cached based abstraction and verification
methods is proposedto apply RINGAin complex|loT environment

37



Enhanced RINGA Framework with Cache—-Mechanism

< Demand & Objective

o Limitation of model checkingin RINGA
v RINGA required performance improvement to be applied with complex loT environment
v’ Verificationforlow computing power devices

« Caching mechanismis proposedto enhance RINGA

~ Abstraction processiat design-time)— ((e0*e3)*e7)

¢ System modeling - Abstracting ——

(etimed) e/}

\ Extract
. \.cache-path

e2 I—

» Parameterization

» Caching '

oia

| <Abstracting process with cache-state>

aql=(((e0*e3)*e7)+(cq0*e8)) O(::
aq2=((cq0"e9)*(e27e6) O.@ \\

i.Cache Dgi’;

I }m‘-w|

e

System design with Parameterization &
L finite state machine ) | Abstract system model |

- Verification processat runtime)

\“‘m_ Save cache-path

4 N -
-

Monitoring Verification ’ <Final result of abstracting> |
| | o1 q‘ i <System model> » Use cache- 'I
el \h —E — o equation
I.Elﬂl]..\ 2 @ ( ID | State Equation Result | Update time | ~5¢ "‘; ab‘m'“"f/",d
AN result -
Monitoring system & Verification with > Update DB M eq0 | State#5 | ((e0%ed)+(el *e5)) 0 190620:09:00 -~

» Reuse cache

Update parameters abstracted model & cache

aql | State#7 | (((e0*e3)*e7)+(eq0%e8)) 0 190620:09:01
Adaptation
[ gnalysis symptom & aq?2 | State#8 | ((eq0*e9)+(e2*e6) 1 190620:09:02
Execute adaptation <Abstracted transition DB>

38



Enhanced RINGA Framework with Cache—-Mechanism

< Results and Status
« Caching mechanism significantly improves performance of RINGA

250 .
»
225 o s
X - .
e R =

200 80 ° A "'f:'m.:'ﬂa““‘#:"‘" BA

175 )
2150
S ‘ = 60 iy
z g
g 125 ]
: ‘ o 50
= :

100 : . 0

"
"
75 30 "ee%é%eé\‘ FAN A\A‘AAA‘AAAAA aYs, 0
oy A .
50 o Vv%?v@eegeee%" \vvvvvvvav,‘%v.éee%"
_ 20 '939
)
. .esee
10 et alate e =i

0 @;a-a.a.s,a,geztgg%:}%%%:_;_: il s

5 10 15 20 25 30 35 40 45 50 0
5 10 15 20 25 30 35 40 45 50
Number of states

< Proposed -©-RINGA Number of states
><Proposed -6-RINGA -¢-CadenceSMV -B-NuSMV —-A-nuXmv



Development process of S—A Research

<+ Development process of self-adaptive software research

RINGA

for Self-Adaptive

RINGA-IoT

for Internet of Things

2018
@SlG."- - = } === |nformation } TENC®N 2018} {ﬁwqm 2019 }
: and software - Sensors
SAC2017 | chnology TENCON 2018
Game Theory based RIN( ; A

Strategy Extraction
for Self-Adaptive

with Cache Mechanism

for Self-Adaptive

7Amblent 2019
hl k44 Ambientintelligence & IEEE . |[EEE Internet of
i ca?tputmg humanized Computing Internet of Things Thingsjourna|

RINGA-ML

for Internet of Things

RINGA

with different architectures

for Self-Adaptive

40



Thank You

Kongjjagae@cbnu.ac.Kr



	Self-Adaptive Software �with Model-Checking
	Personal History
	Relationship with KCSE
	Contents
	Research Background
	Framework
	Self-Adaptive Software
	Self-Adaptive Software
	슬라이드 번호 9
	Model-Checking
	Model-Checking
	Model-Checking
	Model-Checking
	RINGA: Self-Adaptive Framework
	Objective
	Objective
	RINGA: Self-Adaptive Software Framework
	RINGA: Self-Adaptive Software Framework
	RINGA: Self-Adaptive Software Framework
	RINGA: Self-Adaptive Software Framework
	슬라이드 번호 21
	RINGA: Self-Adaptive Software Framework 
	RINGA-IoT:�Self-Adaptive Framework for IoT
	Objective
	Simple Research Background
	Simple Research Background
	RINGA-IoT: Self-Adaptive Framework for IoT
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	RINGA-IoT: Self-Adaptive Framework for IoT
	RINGA-IoT: Self-Adaptive Framework for IoT
	RINGA-IoT: Self-Adaptive Framework for IoT
	Cache-based Model Abstraction
	Objective
	슬라이드 번호 38
	슬라이드 번호 39
	Development process of S-A Research
	Thank You

