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정적 분석기들의 결합을 통한

Bug and Security Vulnerability Detection 

in Multilingual Android apps
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Android Hybrid Apps
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Interoperation: Java - JavaScript 
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Differences between Java and JavaScript
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Buggy Interoperation (1) 
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Buggy Interoperation (2) 

20/62



Buggy Interoperation (2) 
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Buggy Interoperation (3) 
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Interoperation Semantics for Hybrid Apps
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HybriDroid: Overview
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HybriDroid: Analysis Model
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HybriDroid: Client Analyses
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Bug Detection: MethodNotFound
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Static Analysis for JNI Programs
ISSTA’19 DS & ASE’20



Multilingual programs
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Advantages: performance and reusability
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Disadvantage: absence of static checking
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Limitation of static analyzers
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Our approach
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JNI Program: Java Native Interoperation

41/66

41/62



Overall structure of JNI program analysis
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Example: analysis results of existing analysis

native method

native function call
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Evaluation: call graph construction
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Evaluation: interoperation bug detection
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Case: wrong foreing function call (1)
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Case: wrong foreing function call (2)
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Case: wrong foreing function call (3)

…
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Exception mishandling?

There are two ways to handle an exception in native code:

● The native method can choose to return immediately, causing the exception 
to be thrown in the Java code that initiated the native method call.

● The native code can clear the exception by calling ExceptionClear(), 
and then execute its own exception-handling code.

After an exception has been raised, the native code must first clear the exception 
before making other JNI calls.

source: https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp9502
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Case: missing exception handling (1)
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Case: missing exception handling (2)
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Case: missing exception handling (3)
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