
Static Analysis for 
Multilingual Android Apps

2021. 02. 01. Sungho Lee @ KCSE’21



2/62

●

○

○

■

●

○

■

■

■

○

●

○

Profile

https://sites.google.com/view/sat-lab/home


Three Types of Android Apps

3/62



Three Types of Android Apps

4/62



Three Types of Android Apps

5/62



Three Types of Android Apps

6/62



Three Types of Android Apps

7/62



Three Types of Android Apps

8/62

∼



9/62

정적 분석기들의 결합을 통한

Bug and Security Vulnerability Detection 

in Multilingual Android apps



10/62

Composing Static Analyzers for

Bug and Security Vulnerability Detection 

in Multilingual Android apps



11/62

Composing Static Analyzers for

Bug and Security Vulnerability Detection 

in Multilingual Android apps



12/62



Android Hybrid Apps

13/62



Interoperation: Java - JavaScript 

14/62

…

…



Interoperation: Java - JavaScript 

15/62

…

…



Differences between Java and JavaScript

16/62



Differences between Java and JavaScript

17/62



Buggy Interoperation (1) 

18/62

…



Buggy Interoperation (1) 

19/62

…



Buggy Interoperation (2) 

20/62



Buggy Interoperation (2) 

21/62



Buggy Interoperation (3) 

22/62



Buggy Interoperation (3) 

23/62



Interoperation Semantics for Hybrid Apps

24/66

24/62



25/66

Interoperation Semantics for Hybrid Apps

25/62



26/66

Interoperation Semantics for Hybrid Apps

26/62



27/66

Interoperation Semantics for Hybrid Apps

27/62



HybriDroid: Overview

28/62



HybriDroid: Analysis Model

29/62



HybriDroid: Client Analyses

30/62



Bug Detection: MethodNotFound

31/62

…

…



Bug Detection: MethodNotFound

32/62

…

…



Bug Detection: Results

33/62



Bug Detection: Results

34/62

…

…



35/62

Static Analysis for JNI Programs
ISSTA’19 DS & ASE’20



Multilingual programs

36/66

36/62



Advantages: performance and reusability

37/66

37/62



Disadvantage: absence of static checking

38/66

38/62



Limitation of static analyzers

39/66

39/62



Our approach

40/66

40/62



JNI Program: Java Native Interoperation

41/66

41/62



Overall structure of JNI program analysis

42/66

42/62



Example: analysis results of existing analysis

native method

native function call

43/66

43/62



Example: analysis results of existing analysis

JNI function calls

44/66

44/62

native method

native function call



Example: analysis results of existing analysis

45/66

45/62

JNI function calls

native method

native function call



Example: analysis results of existing analysis

46/66

46/62

JNI function calls

native method

native function call



Example: analysis results of existing analysis

47/66

47/62

JNI function calls



Example: analysis results of existing analysis

48/66

48/62

JNI function calls



Example: analysis results of existing analysis

49/66

49/62

JNI function calls



Example: analysis results of existing analysis

50/66

50/62

JNI function calls



Example: analysis results of existing analysis

51/66

51/62

JNI function calls



Evaluation: call graph construction

●
○
○

●

52/66

52/62



Evaluation: interoperation bug detection

●
○
○

53/66

53/62



Case: wrong foreing function call (1)

54/66

54/62



Case: wrong foreing function call (2)

55/66

55/62



Case: wrong foreing function call (3)

…

56/66

56/62



Exception mishandling?

There are two ways to handle an exception in native code:

● The native method can choose to return immediately, causing the exception 
to be thrown in the Java code that initiated the native method call.

● The native code can clear the exception by calling ExceptionClear(), 
and then execute its own exception-handling code.

After an exception has been raised, the native code must first clear the exception 
before making other JNI calls.

source: https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp9502

57/66

57/62

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp9502


Case: missing exception handling (1)

…

…

58/66

58/62



Case: missing exception handling (2)

…

59/66

59/62



Case: missing exception handling (3)

60/66

60/62



61/62

Composing Static Analyzers for

Bug and Security Vulnerability Detection 

in Multilingual Android apps



62/62

Composing Static Analyzers for

Bug and Security Vulnerability Detection 

in Multilingual Android apps


